CT肝图像的基于内容的图像检索(CBIR)的深度基于学习的方法是一个积极的研究领域,但受到了一些关键局限性。首先,它们非常依赖标签的数据,这可能是具有挑战性的,而且获取成本很高。其次,它们缺乏透明度和解释性,这限制了深CBIR系统的可信度。我们通过(1)提出一个自制的学习框架来解决这些局限性,该框架将领域知识纳入培训过程中,以及(2)在CT肝图像的CBIR背景下提供首次表示学习解释性分析。结果表明,与几个指标的标准自我监督方法相比,性能的提高,并且在跨数据集的概括方面得到了改善。此外,我们在CBIR的背景下进行了首次表示学习性分析,该分析揭示了对特征提取过程的新见解。最后,我们通过盘问CBIR进行了一个案例研究,该案例证明了我们提出的框架的可用性。我们认为,我们提出的框架可以在创建可信赖的深层CBIR系统中发挥至关重要的作用,这些系统可以成功利用未标记的数据。
translated by 谷歌翻译
最近集成了多源胸X射线数据集以改进自动诊断的趋势提出了模型学会利用源特定的相关性以通过识别图像的源域而不是医学病理来提高性能。我们假设这种效果由源区,即对应于源的疾病的患病率来强制执行并利用标记 - 不平衡。因此,在这项工作中,我们彻底研究了Lable-angalance对多源训练的影响,以便在广泛使用的Chestx-ray14和Chexpert数据集上进行肺炎检测任务。结果强调并强调了使用更忠实和透明的自解释模型进行自动诊断的重要性,从而实现了对杂志学习的固有检测。他们进一步说明了在确保标签平衡的源域数据集时可以显着降低学习虚假相关的这种不希望的效果。
translated by 谷歌翻译
尽管通过自我监督的代表学习的重要改进导致了从未标记数据学习时,但不存在任何方法,以解释影响学习的代表性的东西。我们通过拟议的方法来解决这一需求,放松,这是一种基于归因的归因的解释的方法。我们的方法还可以在其解释中模拟不确定性,这对于产生值得信赖的解释至关重要。放松通过测量输入和屏蔽版本之间的表示空间中的相似性来解释表示,提供直观的解释并显着优于基于梯度的基线。我们提供了对使用监督和无监督学习培训的特征提取器的新颖分析,提供了对不同学习策略的见解。最后,我们说明了在多视图聚类中放松的可用性,并强调结合不确定性对于提供低复杂性解释是必不可少的,这对解释表示来说至关重要。
translated by 谷歌翻译
多模态数据在遥感(RS)中变得容易获得,并且可以提供有关地球表面的互补信息。因此,多模态信息的有效融合对于卢比的各种应用是重要的,而且由于域差异,噪音和冗余,也是非常具有挑战性的。缺乏有效和可扩展的融合技术,用于遍布多种模式编码器和完全利用互补信息。为此,我们提出了一种基于新型金字塔注意融合(PAF)模块和门控融合单元(GFU)的多模态遥感数据的新型多模态网络(Multimodnet)。 PAF模块旨在有效地从每个模态中获得丰富的细粒度上下文表示,具有内置的交叉级别和巧克力关注融合机制,GFU模块利用了新颖的门控机制,用于早期合并特征,从而降低隐藏的冗余和噪音。这使得可以有效地提取补充方式来提取最迟到的特征融合的最有价值和互补的信息。两个代表性RS基准数据集的广泛实验证明了多模态土地覆盖分类的多模型的有效性,鲁棒性和优越性。
translated by 谷歌翻译
具有潜在变量的深生成模型已被最近用于从多模式数据中学习关节表示和生成过程。但是,这两种学习机制可能相互冲突,表示形式无法嵌入有关数据模式的信息。本研究研究了所有模式和类标签可用于模型培训的现实情况,但是缺少下游任务所需的一些方式和标签。在这种情况下,我们表明,变异下限限制了联合表示和缺失模式之间的相互信息。为了抵消这些问题,我们引入了一种新型的条件多模式判别模型,该模型使用信息性的先验分布并优化了无可能的无可能目标函数,该目标函数可在联合表示和缺失模态之间最大化相互信息。广泛的实验表明了我们提出的模型的好处,这是经验结果表明,我们的模型实现了最新的结果,从而导致了代表性问题,例如下游分类,声音反演和注释产生。
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
Nine language-vision AI models trained on web scrapes with the Contrastive Language-Image Pretraining (CLIP) objective are evaluated for evidence of a bias studied by psychologists: the sexual objectification of girls and women, which occurs when a person's human characteristics are disregarded and the person is treated as a body or a collection of body parts. A first experiment uses standardized images of women from the Sexual OBjectification and EMotion Database, and finds that, commensurate with prior research in psychology, human characteristics are disassociated from images of objectified women: the model's recognition of emotional state is mediated by whether the subject is fully or partially clothed. Embedding association tests (EATs) return significant effect sizes for both anger (d >.8) and sadness (d >.5). A second experiment measures the effect in a representative application: an automatic image captioner (Antarctic Captions) includes words denoting emotion less than 50% as often for images of partially clothed women than for images of fully clothed women. A third experiment finds that images of female professionals (scientists, doctors, executives) are likely to be associated with sexual descriptions relative to images of male professionals. A fourth experiment shows that a prompt of "a [age] year old girl" generates sexualized images (as determined by an NSFW classifier) up to 73% of the time for VQGAN-CLIP (age 17), and up to 40% of the time for Stable Diffusion (ages 14 and 18); the corresponding rate for boys never surpasses 9%. The evidence indicates that language-vision AI models trained on automatically collected web scrapes learn biases of sexual objectification, which propagate to downstream applications.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
We apply the vision transformer, a deep machine learning model build around the attention mechanism, on mel-spectrogram representations of raw audio recordings. When adding mel-based data augmentation techniques and sample-weighting, we achieve comparable performance on both (PRS and CCS challenge) tasks of ComParE21, outperforming most single model baselines. We further introduce overlapping vertical patching and evaluate the influence of parameter configurations. Index Terms: audio classification, attention, mel-spectrogram, unbalanced data-sets, computational paralinguistics
translated by 谷歌翻译
Common to all different kinds of recurrent neural networks (RNNs) is the intention to model relations between data points through time. When there is no immediate relationship between subsequent data points (like when the data points are generated at random, e.g.), we show that RNNs are still able to remember a few data points back into the sequence by memorizing them by heart using standard backpropagation. However, we also show that for classical RNNs, LSTM and GRU networks the distance of data points between recurrent calls that can be reproduced this way is highly limited (compared to even a loose connection between data points) and subject to various constraints imposed by the type and size of the RNN in question. This implies the existence of a hard limit (way below the information-theoretic one) for the distance between related data points within which RNNs are still able to recognize said relation.
translated by 谷歌翻译